MgPc-MgPc Hybridization

ncAFM atomic registration of MgPc molecule on Ag100
nc-AFM atomic registration of single MgPc molecule on Ag100 (surface atoms top and bottom stripes)

Marina Castelli studied the phthalocyanine containing magnesium (MgPc) via 5K scanned probe microscopies extensively during her PhD.

‘Routine’ STM characterisation showed that the molecules were interacting with one another on the Ag100 surface.

ncAFM showed identical contrast for all molecules, pointing to an electronic origin to the observed changes in appearance.

Our key observation was to track the shape of the occupied LUMO for different pairwise distances, an electronic feature that otherwise remained isoenergetic.

With multipass dI/dV mapping we were able to quantitatively track from four- to two-fold rotational symmetry, over distances out to ~3 nm. We found the spatial extent of this attractive hybridization quite surprising.

“Long-Range Surface-Assisted Molecule-Molecule Hybridization”, Small (2021). 10.1002/smll.202005974

FLEET PR
ArXiv link

STM image of MgPc molecules on Ag100 surface
STM image showing the neighbor-induced symmetry reduction

Thin-film Dirac semimetal review article

Iolanda DiBernardo reviewed the development of Na3Bi as a topological electronic material.

The physics of Dirac semimetals (“3d graphene”) is introduced, and the results from the last half decade are tied together in one narrative, in particular our work at Monash demonstrating that Na3Bi grows directly on insulators, and that indeed an electric field will open a topological gap, two key ingredients to achieving a working “topological transistor”.

“Progress in Epitaxial Thin‐Film Na3Bi as a Topological Electronic Material”, Advanced Materials, 2021. 10.1002/adma.202005897