Blog

Concerted Proton Transfer

We stumbled on a very curious observation in the summer of 2018 with DABQDI molecules provided by Olivier Siri‘s team.

ncAFM image of 26 molecule chain. Unfiltered data.
STM chain manipulation
Repeated manipulations with STM tip are capable of dragging a DABQDI chain around the Au111 surface.

While evaluating its experimental suitability for 1d coordination with metals, which has already proven to be fruitful, we noticed the molecules forming chain-like structures even before we introduced metal adatoms.

The low temperature SPM results are sublime: unusual mechanical stability, distinctive intermolecular bonding, and near-Fermi electronic states lighting up at the ends of the chains.

It took an extraordinary cast of theorists hailing from Pavel’s core group, FZU, Charles, Reykjavik, & Madrid Universities to unravel this puzzle and explain these observations as concerted proton tunneling causing a delocalization of electrons.

“Significance of Nuclear Quantum Effects in Hydrogen Bonded Molecular Chains”, ACS Nano, 2021. 10.1021/acsnano.1c02572

ArXiv link

March Meeting 2021

I’m presenting Marina’s work on MgPc hybridization in Focus Session B56 on Monday 15/3 at 1318 (CDT).

Link to my presentation slides.

Other talks from our group:
Dhaneesh Kumar, “Kondo Effect in a 2D Kagome Metal-organic Framework on a Metal” (15/3 1218 CDT)

Bernard Field, “Electronic and Magnetic Structure of Metal-Organic Lattices on Substrates” (15/3 1242 CDT)

Ben Lowe, “Atomic-Scale Evidence of Surface-Catalyzed Gold-Carbon Covalent Bonding” (18/3 1206 CDT)

MgPc-MgPc Hybridization

ncAFM atomic registration of MgPc molecule on Ag100
nc-AFM atomic registration of single MgPc molecule on Ag100 (surface atoms top and bottom stripes)

Marina Castelli studied the phthalocyanine containing magnesium (MgPc) via 5K scanned probe microscopies extensively during her PhD.

‘Routine’ STM characterisation showed that the molecules were interacting with one another on the Ag100 surface.

ncAFM showed identical contrast for all molecules, pointing to an electronic origin to the observed changes in appearance.

Our key observation was to track the shape of the occupied LUMO for different pairwise distances, an electronic feature that otherwise remained isoenergetic.

With multipass dI/dV mapping we were able to quantitatively track from four- to two-fold rotational symmetry, over distances out to ~3 nm. We found the spatial extent of this attractive hybridization quite surprising.

“Long-Range Surface-Assisted Molecule-Molecule Hybridization”, Small (2021). 10.1002/smll.202005974

FLEET PR
ArXiv link

STM image of MgPc molecules on Ag100 surface
STM image showing the neighbor-induced symmetry reduction

Thin-film Dirac semimetal review article

Iolanda DiBernardo reviewed the development of Na3Bi as a topological electronic material.

The physics of Dirac semimetals (“3d graphene”) is introduced, and the results from the last half decade are tied together in one narrative, in particular our work at Monash demonstrating that Na3Bi grows directly on insulators, and that indeed an electric field will open a topological gap, two key ingredients to achieving a working “topological transistor”.

“Progress in Epitaxial Thin‐Film Na3Bi as a Topological Electronic Material”, Advanced Materials, 2021. 10.1002/adma.202005897